Teleodontología y estrategia de vigilancia molecular para COVID-19 proporcionando un entorno clínico seguro en Odontología Pediátrica

Autores/as

DOI:

https://doi.org/10.30979/revabeno.v23i1.2016

Palabras clave:

COVID-19, Teleodontología, Odontología Pediátrica, Técnicas de Diagnóstico Molecular

Resumen

El propósito de este manuscrito es describir un modelo híbrido de atención odontológica, a través de una plataforma virtual que precede a la realización de vigilancia molecular presencial mediante hisopado nasal/oral combinado, en pacientes pediátricos. En este estudio longitudinal se utilizó una muestra de conveniencia de pacientes pediátricos y miembros del equipo odontológico en la clínica de pregrado de la Facultad de Odontología de la Universidade de São Paulo durante la pandemia de COVID-19. En primer lugar, se contactó con los padres y se utilizó la consulta virtual para seleccionar a los niños que requerían tratamiento odontológico. Se programaron citas una vez a la semana durante dos meses, en las que se realizó el cribado previo a COVID-19. El equipo dental y los padres de los niños rellenaron un cuestionario en el que se abordaban los síntomas relacionados con la COVID-19. A continuación, los miembros del equipo dental y los niños fueron sometidos a pruebas de detección de COVID-19 antes de entrar en la clínica para atendimiento mediante cribado con hisopo nasal/oral y RT-PCR. Se inscribieron 93 personas, todas las cuales cumplimentaron el cuestionario electrónico sobre síntomas y se les recogieron muestras semanalmente, con un total de 241 pares de hisopos. Ningún participante declaró síntomas de COVID-19 antes de entrar en la clínica para recibir tratamiento. Sólo un niño dio positivo en la tercera semana de toma de muestras. El modelo de tratamiento híbrido unido a las pruebas moleculares para asintomáticos proporcionó un entorno clínico seguro con respecto a la transmisión del SARS-CoV-2.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Catielma Nascimento Santos, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Marcelo Bonecker, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Gabriela Sá, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Rodrigo Melim Zerbinati, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Tatiana Ayumi Sassaki, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Natan Ponzoni Galvani, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Simone Giannecchini, Università degli Studi di Firenze

Università degli Studi di Firenze (UniFI), Firenze, Toscana, Italia.

Ana Estela Haddad, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Paulo Henrique Braz-Silva, Universidade de São Paulo

Universidade de São Paulo (USP), São Paulo, São Paulo, Brasil.

Citas

OPAS/WHO Brazil. World Health Organization. History of the pandemic of COVID-19 [Internet]. 2020 [cited 2021 Oct 30]:3. Available from: https://www.paho.org/bra/index.php?option=com_content&view=article&id=6120:oms-afirma-que-covid-19-e-agora-caracterizada-como-pandemia&Itemid=812

Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet [Internet]. 2020;395(10223):514–523. doi: https://doi.org/10.1016/S0140-6736(20)30154-9

Walger P, Heininger U, Knuf M, Exner M, Popp W, Fischbach T, et al. Children and adolescents in the CoVid-19 pandemic: Schools and daycare centers are to be opened again without restrictions. The protection of teachers, educators, carers and parents and the general hygiene rules do not conflict with this. GMS Hyg Infect Control [Internet]. 2020;15:Doc11. doi: https://doi.org/10.3205/dgkh000346

Wallace CK, Schofield CE, Burbridge LAL, O’Donnell KL. Role of teledentistry in paediatric dentistry. Br Dent J [Internet]. 2021;1–6. doi: https://doi.org/10.1038/s41415-021-3015-y

Abbas B, Wajahat M, Saleem Z, Imran E, Sajjad M, Khurshid Z. Role of Teledentistry in COVID-19 Pandemic: A Nationwide Comparative Analysis among Dental Professionals. Eur J Dent [Internet]. 2020;14:S116–122. doi: https://doi.org/10.1055/s-0040-1722107

Ghai S. Teledentistry during COVID-19 pandemic. Diabetes Metab Syndr [Internet]. 2020;14(5):933-935. doi: https://doi.org/10.1016/j.dsx.2020.06.029

Santos CN, Rezende KM, Oliveira Neto NF, Okay TS, Braz-Silva PH, Bönecker M. Saliva: an important alternative for screening and monitoring of COVID-19 in children. Braz Oral Res [Internet]. 2020;34:1–8. doi: https://doi.org/10.1590/1807-3107bor-2020.vol34.0125

Huang N, Pérez P, Kato T, Mikami Y, Okuda K, Gilmore RC, et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med [Internet]. 2021;27(5):892-903. doi: https://doi.org/10.1038/s41591-021-01296-8

Souza Filho GL. Video for Health [Internet]. Digital Video Applications Laboratory. Federal University of Paraíba. National Education and Research Network. Available from: https://v4h.cloud/

Brasil RF do. Law 13.709, August 14 of the 2018 [Internet]. 2018:1–27. Available from: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.html

HHS. HIPAA for professionals [Internet]. HHS.gov. 2017:1–2. Available from: https://www.hhs.gov/hipaa/for-professionals/index.html

Bavarresco CS, Hauser L, Haddad AE, Harzheim E. Impact of teleconsultations on the conduct of oral health teams in the Telehealth Brazil Networks Programme. Braz Oral Res [Internet]. 2020;34:1–9. doi: https://doi.org/10.1590/1807-3107bor-2020.vol34.0011

Haddad AE, Garrido D, Monteiro A, Guedes T, Figueiredo AM. Follow up of the legislation advancement along the implementation of the brazilian telehealth programme. J Int Soc Telemed eHealth [Internet]. 2016;4:e11. doi: https://doi.org/10.1590/1807-3107bor-2020.vol34.0011

Kohara EK, Abdala CG, Novaes TF, Braga MM, Haddad E, Mendes FM. Is it feasible to use smartphone images to perform telediagnosis of different stages of occlusal caries lesions? PLoS ONE [Internet]. 2018;13(9):e0202116. doi: https://doi.org/10.1371/journal.pone.0202116

Nuvvula S, Mallineni SK. Remote management of dental problems in children during and post the covid-19 pandemic outbreak: A teledentistry approach. Dent Med Probl [Internet]. 2021;58(2):237–241. doi: https://doi.org/10.17219/dmp/133182

Lin GSS, Koh SH, Ter KZ, Lim CW, Sultana S, Tan WW. Awareness, Knowledge, Attitude, and Practice of Teledentistry among Dental Practitioners during COVID-19: A Systematic Review and Meta-Analysis. Medicina (Kaunas) [Internet]. 2022:15;58(1):130. doi: https://doi.org/10.3390/medicina58010130

Siles-Garcia AA, Alzamora-Cepeda AG, Atoche-Socola KJ, Peña-Soto C, Arriola-Guillén LE. Biosafety for Dental Patients during Dentistry Care after COVID-19: A Review of the Literature. Disaster Med Public Health Prep [Internet]. 2021;15(3):e43–e48. doi: https://doi.org/10.1017/dmp.2020.252

Kochhar AS, Bhasin R, Kochhar GK, Dadlani H, Thakkar B, Singh G. Dentistry during and after COVID-19 pandemic: Pediatric considerations. Int J Clin Pediatr Dent [Internet]. 2020;13(4):399–406. doi: https://doi.org/10.5005/jp-journals-10005-1782

Lippi G, Mattiuzzi C, Bovo C, Plebani M. Current laboratory diagnostics of coronavirus disease 2019 (COVID-19). Acta Biomed [Internet]. 2020;9(2):137–145. doi: https://doi.org/10.23750/abm.v91i2.9548

Ge Z yu, Yang L ming, Xia J jia, Fu X hui, Zhang Y zhen. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J Zhejiang Univ Sci B [Internet]. 2020;215:361–368. doi: https://doi.org/10.1631/jzus.B2010010

Hegde MN, Qaiser S, Hegde ND. Clinical protocols in dental practice: Post-COVID-19 initial phase: screening, history-taking, safety protocol final phase: personal protection, treatment strategies, disinfection. J Conserv Dent [Internet]. 2019;22(5):408–410. doi: https://doi.org/10.4103/JCD.JCD_287_20

Matuck BF, Dolhnikoff M, Maia GVA, Isaac Sendyk D, Zarpellon A, Costa Gomes S, et al. Periodontal tissues are targets for Sars-Cov-2: a post-mortem study. J Oral Microbiol [Internet]. 2021;13(1):1-6. doi: https://doi.org/10.1080/20002297.2020.1848135

Matuck BF, Dolhnikoff M, Duarte-Neto AN, Maia G, Gomes SC, Sendyk DI, et al. Salivary glands are a target for SARS-CoV-2: a source for saliva contamination. J Pathol [Internet]. 2021;254(3):239–243. doi: https://doi.org/10.1002/path.5679

Sapkota D, Søland TM, Galtung HK, Sand LP, Giannecchini S, To KKW, et al. COVID-19 salivary signature: diagnostic and research opportunities. J Clin Pathol [Internet]. 2021;74(6):344–349. doi: https://doi.org/10.1136/jclinpath-2020-206834

Mullane MJ, Thomas HM, Epstein M, Mandzufas J, Mullan N, Whelan A, et al. DETECT Schools Study Protocol: A Prospective Observational Cohort Surveillance Study Investigating the Impact of COVID-19 in Western Australian Schools. Front Public Heal [Internet]. 2021;9(February):1–10. doi: https://doi.org/10.3389/fpubh.2021.636921

Meuris C, Kremer C, Geerinck A, Locquet M, Bruyère O, Defêche J, et al. Transmission of SARS-CoV-2 after COVID-19 Screening and Mitigation Measures for Primary School Children Attending School in Liège, Belgium. JAMA Netw Open [Internet]. 2021;4(10):1–8. doi: https://doi.org/10.1001/jamanetworkopen.2021.28757

Smyrlaki I, Ekman M, Lentini A, Rufino de Sousa N, Papanicolaou N, Vondracek M, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat Commun [Internet]. 2020;11(1):1–12. doi: https://doi.org/10.1001/10.1038/s41467-020-18611-5

Morecchiato F, Coppi M, Baccani I, Maggini N, Ciccone N. Evaluation of extraction-free RT-PCR methods for faster and cheaper detection of SARS-CoV-2 using two commercial systems. Int J Infect Dis [Internet]. 2021;112:264-268. doi: https://doi.org/10.1016/j.ijid.2021.09.046

Reilly M, Chohan B. Pooled testing for sars-cov-2, options for efficiency at scale. Bull World Health Organ [Internet]. 2021;99(10):708–714. doi: https://doi.org/10.2471/BLT.20.283093

Barbosa GR, Moreira LVL, Justo AFO, Perosa AH, Souza Luna LK, Chaves APC, et al. Rapid spread and high impact of the variant of concern P.1 in the largest city of Brazil. .J Infec [Internet]. 2021;83(1):119–145. doi: https://doi.org/10.1016/j.jinf.2021.04.008

Naveca FG, Nascimento V, Souza VC, Corado AL, Nascimento F, Silva G, et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat Med [Internet]. 2021;27(7):1230–1238. doi: https://doi.org/10.1038/s41591-021-01378-7

Kamidani S, Rostad CA, Anderson EJ. COVID-19 vaccine development: A pediatric perspective. Curr Opin Pediatr [Internet]. 2021;33(1):144–151. doi: https://doi.org/10.1097/MOP.0000000000000978

Descargas

Publicado

16-11-2023

Cómo citar

Santos, C. N., Bonecker, M., Sá, G., Zerbinati, R. M., Sassaki, T. A., Galvani, N. P., Giannecchini, S., Haddad, A. E., & Braz-Silva, P. H. (2023). Teleodontología y estrategia de vigilancia molecular para COVID-19 proporcionando un entorno clínico seguro en Odontología Pediátrica. Revista Da ABENO, 23(1), 2016. https://doi.org/10.30979/revabeno.v23i1.2016

Número

Sección

Artículo